Bcl-2 inhibitors sensitize tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis by uncoupling of mitochondrial respiration in human leukemic CEM cells.

نویسندگان

  • Ji-Hui Hao
  • Ming Yu
  • Feng-Ting Liu
  • Adrian C Newland
  • Li Jia
چکیده

Previous studies have shown that the lymphoblastic leukemia CEM cell line is resistant to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis because of a low expression of caspase-8. Bcl-2 inhibitors, BH3I-2' and HA14-1, are small cell-permeable nonpeptide compounds, are able to induce apoptosis by mediating cytochrome c release, and also lead to dissipation of the mitochondrial membrane potential (DeltaPsim). This study aimed to use the Bcl-2 inhibitors to sensitize CEM cells to TRAIL-induced apoptosis by switching on the mitochondrial apoptotic pathway. We found that a low dose of BH3I-2' or HA14-1, which did not induce cytochrome c release, greatly sensitized CEM cells to TRAIL-induced apoptosis. In a similar manner to the classical uncoupler carbonyl cyanide m-chlorophenylhydrazone (CCCP), both BH3I-2' and HA14-1 induced a reduction in DeltaPsim, a generation of reactive oxygen species (ROS), an increased mitochondrial respiration, and a decreased ATP synthesis. This uncoupling function of the Bcl-2 inhibitors was responsible for the synergy with TRAIL-induced apoptosis. CCCP per se did not induce apoptosis but again sensitized CEM cells to TRAIL-induced apoptosis by uncoupling mitochondrial respiration. The uncoupling effect facilitated TRAIL-induced Bax conformational change and cytochrome c release from mitochondria. Inhibition of caspases failed to block TRAIL-mediated cell death when mitochondrial respiration was uncoupled. We observed that BH3I-2', HA14-1, or CCCP can overcome resistance to TRAIL-induced apoptosis in TRAIL-resistant cell lines, such as CEM, HL-60, and U937. Our results suggest that the uncoupling of mitochondrial respiration can sensitize leukemic cells to TRAIL-induced apoptosis. However, caspase activation per se does not represent an irreversible point of commitment to TRAIL-induced cell death when mitochondrial respiration is uncoupled.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) promotes mitochondrial dysfunction and apoptosis induced by 7-hydroxystaurosporine and mitogen-activated protein kinase kinase inhibitors in human leukemia cells that ectopically express Bcl-2 and Bcl-xL.

Previous studies have demonstrated that cotreatment with mitogen activated-protein kinase kinase (MEK) 1/2 inhibitors (e.g., PD184352) and the checkpoint abrogator 7-hydroxystaurosporine (UCN-01) dramatically induces apoptosis in a variety of human leukemia and multiple myeloma cell types. The purpose of this study was to evaluate the roles of Bcl-2 family members and the relative contribution ...

متن کامل

Simultaneous activation of the intrinsic and extrinsic pathways by histone deacetylase (HDAC) inhibitors and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) synergistically induces mitochondrial damage and apoptosis in human leukemia cells.

Interactions between histone deacetylase (HDAC) inhibitors and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), also known as Apo2 ligand, were examined in human leukemia cells (e.g., U937, Jurkat, and HL-60). Simultaneous exposure of cells to 100-ng/ml TRAIL with either 1-mM sodium butyrate or 2- micro M suberoylanilide hydroxamic acid resulted in a striking increase in leukemi...

متن کامل

Adriamycin sensitizes the adriamycin-resistant 8226/Dox40 human multiple myeloma cells to Apo2L/tumor necrosis factor-related apoptosis-inducing ligand-mediated (TRAIL) apoptosis.

The newly discovered member of the tumor necrosis factor superfamily, Apo2L/tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), has been identified as an apoptosis-inducing agent in sensitive tumor cells but not in the majority of normal cells, and hence it is of potential therapeutic application. However, many tumor cells are resistant to Apo2L/TRAIL-mediated apoptosis. Various ch...

متن کامل

Anticancer agents sensitize tumor cells to tumor necrosis factor-related apoptosis-inducing ligand-mediated caspase-8 activation and apoptosis.

Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a new cytokine that was proposed to specifically induce apoptosis of cancer cells. In tumor cells that are resistant to the cytokine, subtoxic concentrations of chemotherapeutic drugs can restore the response to TRAIL. The present study further explores the mechanisms that determine tumor cell sensitivity to TRAIL by comparing f...

متن کامل

Subcellular distribution and redistribution of Bcl-2 family proteins in human leukemia cells undergoing apoptosis.

It has been suggested that the ratio of Bcl-2 family proapoptotic proteins to antiapoptotic proteins determines the sensitivity of leukemic cells to apoptosis. However, it is believed that Bcl-2 family proteins exert their function on apoptosis only when they target to the mitochondrial outer membrane. The vinblastine-resistant T-lymphoblastic leukemic cell line CEM/VLB100 has increased sensiti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cancer research

دوره 64 10  شماره 

صفحات  -

تاریخ انتشار 2004